Delocalized Betti numbers and Morse type inequalities
نویسندگان
چکیده
منابع مشابه
Von Neumann Betti Numbers and Novikov Type Inequalities
In this paper we show that Novikov type inequalities for closed 1-forms hold with the von Neumann Betti numbers replacing the Novikov numbers. As a consequence we obtain a vanishing theorem for L cohomology. We also prove that von Neumann Betti numbers coincide with the Novikov numbers for free abelian coverings. §0. Introduction S. Novikov and M. Shubin [NS] proved that Morse inequalities for ...
متن کامل-betti Numbers
The Atiyah conjecture predicts that the L-Betti numbers of a finite CW -complex with torsion-free fundamental group are integers. We show that the Atiyah conjecture holds (with an additional technical condition) for direct and inverse limits of groups for which it is true. As a corollary it holds for residually torsion-free solvable groups, e.g. for pure braid groups or for positive 1-relator g...
متن کاملBetti numbers of subgraphs
Let G be a simple graph on n vertices. LetH be either the complete graph Km or the complete bipartite graph Kr,s on a subset of the vertices in G. We show that G contains H as a subgraph if and only if βi,α(H) ≤ βi,α(G) for all i ≥ 0 and α ∈ Z. In fact, it suffices to consider only the first syzygy module. In particular, we prove that β1,α(H) ≤ β1,α(G) for all α ∈ Z if and only if G contains a ...
متن کاملBetti Numbers and Injectivity Radii
The theme of this paper is the connection between topological properties of a closed orientable hyperbolic 3-manifold M and the maximal injectivity radius of M . In [4] we showed that if the first Betti number of M is at least 3 then the maximal injectivity radius of M is at least log 3. By contrast, the best known lower bound for the maximal injectivity radius of M with no topological restrict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2011
ISSN: 0035-7596
DOI: 10.1216/rmj-2011-41-4-1361